organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hiroyuki Ishida

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.042 wR factor = 0.121Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,2,3,4-Tetrahydroquinolinium hydrogen chloranilate

In the title compound, $C_9H_{12}N^+ \cdot C_6HCl_2O_4^-$, two chloranilate ions are connected by $O-H \cdot \cdot \cdot O$ hydrogen bonds to form a dimeric unit. The 1,2,3,4-tetrahydroquinolinium ions are linked on both sides of the dimer *via* an $N-H \cdot \cdot \cdot O$ hydrogen bond to give a 2:2 complex of chloranilic acid and tetrahydroquinoline. The 2:2 complexes are held together by an $N-H \cdot \cdot \cdot O$ hydrogen bond and a $\pi-\pi$ stacking interaction to give a molecular tape.

Comment

Crystal structures in the chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone)–secondary amine system have been analysed as 1:1 salts of morpholine (Ishida & Kashino, 1999), diethylamine (Ishida & Kashino, 2000) and piperidine (Fukunaga & Ishida, 2003), and as a 1:2 salt of pyrrolidine (Ishida, 2004).

In the present study, we have prepared the 1:1 salt, (I), of tetrahydroquinoline and determined its crystal structure in order to extend the previous examination. Two chloranilate ions related by a twofold rotation axis are connected by $O - H \cdots O$ hydrogen bonds (Table 1) and form a dimeric unit as observed in the diethylammonium and lutidinium salts (Ishida & Kashino, 2002). Atom H1 is also involved in an intramolecular hydrogen bond with O1. The 1,2,3,4-tetrahydro-

Figure 1

ORTEP-3 (Farrugia, 1997) drawing of the 2:2 complex of (I) with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds are indicated by dashed lines [symmetry code: (i) 1 - x, y, $\frac{3}{2} - z$].

 $\ensuremath{\mathbb{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 31 August 2004 Accepted 1 September 2004 Online 4 September 2004

Figure 2

Packing diagram showing molecular tapes formed *via* $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (shown as dashed lines). A $C-H\cdots \pi$ interaction between the molecular layers is also shown as a dashed line.

quinolinium ions are linked on both sides of the dimer *via* a bifurcated hydrogen bond of N-H2···O2 and N-H2···O3, forming a 2:2 complex of chloranilic acid and tetrahydroquinoline (Fig. 1). The 2:2 complexes are held together by an N-H3···O1ⁱⁱ hydrogen bond (Table 1) and a π - π stacking interaction between the chloranilate ions related by an inversion center, the interplanar and centroid-centroid separations being 3.351 (2) and 3.6980 (17) Å, respectively, giving a molecular tape running along the *c* axis (Fig. 2). The molecular tapes are stacked along the *b* axis to form a layer extending parallel to the *bc* plane. Between neighboring layers, a C-H··· π interaction [H12···Cgⁱⁱⁱ = 2.85 Å, C12···Cgⁱⁱⁱ = 3.646 (3) Å and C12-H12···Cgⁱⁱⁱ = 144°, where Cg denotes the centroid of benzene ring C10-C15; symmetry code: (iii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$] is observed.

Experimental

Crystal of (I) were obtained by slow evaporation of an acetonitrile solution of 1,2,3,4-tetrahydroquinoline and chloranilic acid in a 1:1 molar ratio.

Crystal data

$C_0H_{12}N^+ \cdot C_6HCl_2O_4^-$	$D_{\rm r} = 1.538 {\rm Mg m}^{-3}$		
$M_r = 342.16$	Mo $K\alpha$ radiation		
Monoclinic, $C2/c$	Cell parameters from 25		
a = 25.840 (8) Å	reflections		
b = 7.0633 (10) Å	$\theta = 11.5 - 12.5^{\circ}$		
c = 17.107 (5) Å	$\mu = 0.46 \text{ mm}^{-1}$		
$\beta = 108.79 \ (3)^{\circ}$	T = 298 K		
V = 2955.9 (14) Å ³	Prism, brown		
Z = 8	$0.40 \times 0.30 \times 0.30$ mm		

Data collection

Rigaku AFC-5R diffractometer				
ω –2 θ scans				
Absorption correction: ψ scan				
(North et al., 1968)				
$T_{\min} = 0.783, \ T_{\max} = 0.872$				
3771 measured reflections				
395 independent reflections				
2498 reflections with $I > 2\sigma(I)$				

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.121$ S = 1.053395 reflections 211 parameters H atoms treated by a mixture of independent and constrained refinement $\begin{aligned} R_{\rm int} &= 0.015 \\ \theta_{\rm max} &= 27.5^{\circ} \\ h &= -2 \rightarrow 33 \\ k &= 0 \rightarrow 9 \\ l &= -22 \rightarrow 21 \\ 3 \text{ standard reflections} \\ \text{every 97 reflections} \\ \text{intensity decay: } 0.2\% \end{aligned}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.067P)^2 \\ &+ 1.1P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
04-H1···O1	0.88 (5)	2.18 (4)	2.630 (2)	111 (4)
$O4-H1\cdots O1^i$	0.88 (5)	1.90 (5)	2.693 (2)	148 (4)
$N-H2\cdots O2$	0.88(3)	1.91 (3)	2.733 (2)	154 (3)
$N-H2\cdots O3$	0.88 (3)	2.51 (3)	3.173 (3)	132 (2)
$N-H3\cdots O1^{ii}$	0.90 (3)	2.01 (3)	2.883 (3)	166 (3)

Symmetry codes: (i) $1 - x, y, \frac{3}{2} - z$; (ii) $x, 1 - y, z - \frac{1}{2}$.

H atoms attached to the N and O atoms were refined isotropically. Other H atoms were treated as riding atoms, with C-H = 0.97 and 0.93 Å for methylene and aromatic H atoms, respectively. $U_{iso}(H)$ values were set at $1.5U_{eq}(C)$ for the methylene H atoms and at $1.2U_{eq}(C)$ for the aromatic H atoms.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1990); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN for Windows* (Molecular Structure Corporation, 1997–1999); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

X-ray measurements were made at the X-ray Laboratory of Okayama University. This work was supported by Grant-in-Aid for Scientific Research (C) (No. 16550014) from the Ministry of Education, Science, Sports and Culture of Japan, and by the Mitsubishi Foundation.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fukunaga, T. & Ishida, H. (2003). Acta Cryst. E59, 01793-01795.
- Ishida, H. (2004). Acta Cryst. E60, 0974-0976.
- Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923-1926.
- Ishida, H. & Kashino, S. (2000). Acta Cryst. C56, e202-e204.
- Ishida, H. & Kashino, S. (2002). Z. Naturforsch. Teil A, 57, 829-836.
- Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1997–1999). *TEXSAN for Windows*. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.